Online HERS Rater Certification Training Course
YOUR #1 ONLINE HERS RATER
 TRAINING RESOURCE
  • HOME
  • HERS PRACTICE EXAMS
    • FREE HERS RATER EXAM QUESTIONS
  • NEWBIES
    • WHAT DOES IT LOOK LIKE?
    • HOW DO I DO...?
    • HOW TO CHOOSE A HERS RATER TRAINING CENTER
    • STEP-BY-STEP GUIDE
  • STUDY GUIDES
    • HERS RATER WRITTEN EXAM >
      • Section 1 Building Science Fundamentals >
        • 1a. Basic Terms & Definitions >
          • 1. Airflow in Buildings
          • 2. Equipment Efficiencies
          • 3. Power and Energy
          • 4. Effective Leakage Area
          • 5. Area Weighted R-Value
          • 6. Baseload / Seasonal Energy Use
          • 7. Driving Forces (Including Natural and Mechanical)
          • 8. Behavior of Radiation
          • 9. Thermal Resistance / Transmittance: R and U Values
          • 10. Latent / Sensible Heat
          • 11. Total Equivalent Length
          • 12. Dehumidification / Humidification
          • 13. Convert Pressure Units
          • 14. Thermal Bridges
          • 15. Pressure Boundary
          • 16. Stack Effect
          • 17. Exfiltration and Infiltration
          • 18. Natural / Mechanical Ventilation
          • 19. Net Free Area
          • 20. Input & Output Capacity
          • 21. Peak Electrical Demand
          • 22. Permeability and Perm Rating
          • 23. Standby Loss
          • 24. IAQ (indoor air quality): Moisture, CO, Dust
        • 1b. Principals of Energy, Air & Moisture Thermodynamics >
          • 1. Thermodynamics: Conduction, Convection, Radiation, ΔT
          • 2. Factors That Affect Insulation Performance
          • 3. House Pressurization/Depressurization by Various Forces
          • 4. Heat Gain / Loss
          • 5. Power and Energy
          • 6. Moisture Transport Mechanisms
          • 7. Identify Areas of Highest Relative Humidity
          • 8. Principles of Combustion
        • 1c. Combustion Safety >
          • 1. Combustion Analysis
          • 2. Carbon Monoxide (CO) Testing
          • 3. Combustion Appliance Venting, Draft, Combustion Air & Sizing
          • 4. Understand Combustion Safety Issues
      • Section 2 Buildings and Their Systems >
        • 2a. Building Components >
          • 1. Identify basic duct configurations and components
          • 2. Identify Basic Hydronic Distribution Configurations and Components
          • 3. Identify Basic Structural Components of Residential Construction
          • 4. Thermal Boundaries and Insulation Applications
          • 5. Basic Electrical Components and Safety Considerations
          • 6. Basic Fuel Delivery Systems and Safety Considerations
          • 7. Basic bulk water management components (drainage plumbing gutters sumps etc)
          • 8. Vapor barriers/retarders
          • 9. Radiant Barrier Principles and Installations
          • 10. Understand Fenestration Types and Efficiencies
          • 11. Understand Issues Involved With Basements, Crawlspaces, Slabs, Attics, Attached Garages, Interstitial Cavities, and Bypasses
          • 12. Understand Issues Involved With Ventilation Equipment
          • Understand Basic Heating / Cooling Equipment Components Controls and Operation
          • Understand Basic DHW Equipment Components Controls and Operation
          • Identify Common Mechanical Safety Controls
          • Identify Insulation Types and R-Values
          • Understand Various Mechanical Ventilation Equipment and Strategies: Spot, ERV, HRV
        • Conservation Strategies >
          • Appropriate Insulation Applications and Installation Based On Existing Conditions
          • Opportunity for ENERGY STAR Lighting and Appliances
          • Identify Duct Sealing Opportunities and Applications
          • Understand Importance of Air Leakage Control and Remediation Procedures
          • Blower Door-Guided Air Sealing Techniques
          • Water Conservation Devices and Strategies
          • Domestic Hot Water (DHW) Conservation Strategies
          • Heating & Cooling Efficiency Applications
          • Proper Use of Modeling to Determine Heating and Cooling Equipment Sizing and Appropriate Energy
          • Understand the Use of Utility History Analysis in Conservation Strategies
          • Appropriate Applications For Sealed Crawlspaces Basements and Attics
          • Identify / Understand High Density Cellulose
          • Appropriate Applications for Fenestration Upgrades Including Modification or Replacement
        • Comprehensive Building Assessment Process >
          • Determine Areas of Customer Complaints / Concerns in Interview
          • Understand / Recognize Need For Conducting Appropriate Diagnostic Procedures
          • Interaction Between Mechanical Systems, Envelope Systems and Occupant Behavior
        • Design Considerations >
          • Appropriate Insulation Applications Based On Existing Conditions
          • Understand Fire Codes as Necessary to Apply Home Performance in a Code-Approved Manner
          • Understand / Recognize Building Locations Where Opportunities for Retrofit Materials
          • Understand Climate Specific Concerns
          • Understand Indoor Environment Considerations for the Environmentally Sensitive
          • Understand Impact of Building Orientation, Landscape Drainage, and Grading
          • Opportunity Potential Renewable Energy Applications: Geothermal, Photovoltaic, Wind
          • Understand Impact of Shading on Heating / Cooling Loads
          • Awareness for Solar Gain Reduction / Solar Gain Opportunities
          • Understand Need for Modeling Various Options For Efficiency Upgrades
      • Measurement & Verification of Building Performance >
        • Measurement & Verification of Building Performance >
          • Air Leakage Test Results
          • Understand Building Shell / Envelope Leakage
          • Apply Fundamental Construction Mathematics and Unit Conversions
          • Calculate Building Tightness Levels (Minimum Ventilation Requirements)
          • Calculate Heating Degree Days and Cooling Degree Days
          • Identify Proper Appliance and Combustion Appliance Venting
          • Ventilation calculations and strategies
          • Proper methods for identifying / testing fuel leaks
          • Blower door setup, accurate measurement and interpretation of results
          • Combustion Appliance Zone (CAZ): depressurization, spillage, draft, Carbon Monoxide (ambient and flue)
          • Carbon Monoxide (CO) evaluation: ambient
          • Proper applications and use of temperature measuring devices
          • Pressure pan and room to room pressure diagnostics
          • Recognize contributing factors to comfort problems
          • Inspect for areas containing moisture or bulk water in undesirable locations
          • Understand and inspect for basic electric safety (e.g. frayed wires, open boxes, etc)
      • RESNET HERS RATER National Standards & Project Specifications >
        • Understand applicability content and intent of BPI National Standards – Do no harm, make buildings more healthy, comfortable, durable and energy efficient
        • Recognize need for a professional local/state/national codes evaluation
        • Be able to specify appropriate materials and processes needed for building performance projects
      • Analyzing Buildings Systems >
        • Recognize need for air sealing measures and their impact on other building systems
      • Conduct and Communications >
        • Conservation strategies
        • Conservation strategies
    • HERS RATER FIELD EXAM >
      • How To Put The House Under Worst Case & CAZ
      • What's What? Pa, CFM, CFM50, CAZ, Draft, Room Pressure
      • What To Know In The Attic
      • What To Know In The House
    • BLOWER DOOR TEST >
      • Manometer Setup
    • RESNET STANDARDS >
      • RESNET Standards Decoded
  • ESSENTIALS
    • HELP, I HATE MATH!
    • AUDITOR TO CREW COMMUNICATION
    • COMMON AUDITOR / CREW MISTAKES
    • RUN LIKE HELL
    • CONTACT
  • AFTER THE EXAM
    • GROW YOUR HOME PERFORMANCE BUSINESS
    • START A HOME PERFORMANCE BUSINESS
    • FREE ENERGY AUDITOR MINI COURSE
    • RESOURCES
  • NEWSLETTER

How To Pick A HERS Rater Training Center

FREE HERS RATER PRACTICE EXAM

Picture

PUT YOUR HOME PERFORMANCE BUSINESS ON ROCKET FUEL

Picture
There are several paths here, each is only as good as you are dedicated to learning the material.  

  1. National chains. Cookie cutter is not a word you want to hear in this industry but is how I would describe their training.  These HERS Rater training centers all use one book and set of power point slides, regardless of your location, climate or housing types.  HERS Rater Proctors can be from out-of-state and not in the industry at all.  The material is crammed into a 4 day classroom and 1 day field training setting. Field training and exams are done in a group setting where not all students get hands-on testing.  The facilities are weak with little to zero actual training labs as each class is held at a hotel or community college.  Energy auditors can come out of the class knowing very little. not even how to set up a blower door, or can come out with moderate knowledge.
  2. Local HERS Rater training center.  Your state or city's local weatherization program is likely run or overseen by a local non-profit organization who employees energy auditors, field technicians and most likely is a RESNET approved training center and affiliate   Pass rates are lower at these centers because quality training is the name of the game here. The training class can be split over many classes with the downside being the cost and time to do all the classes or can be one long 3 week course or a short 5 day course.  Some of them offer funding through work-force grants but less than the national chains.  The trainers are good and experienced but if you are only in a 5 day course, you may not get to take advantage of all their knowledge. The training facilities are good and sometimes custom made for local climates and housing types.  The down side is the lower pass rates and disconnect from the teacher to the student (they don't care if you pass or not if they are not-for-profit) so be prepared to be engaged and ready to ask questions.  If they are for-profit and a smaller local training center, do some research and find the owner of the company, see what their background is.  If they are from a home performance background, great!  If they are from a totally different industry, you are likely going to find some cookie cutter aspects in the class.
  3. Online.  The nice thing about taking an online HERS Rater course is that it is packed with material and detail.  You can pause the lecture or go back to hear sections again if you want and some have immediate online help if you have questions.  

The key with any training center you choose is to be engaged and ask questions.  An ideal training center would have an instructor that has gotten dirty and climbed in attics day-in-and-day-out.  A good training center will also have a well equipped field lab where you can use a combustion analyzer, blower door and infrared camera.  Finally an ideal training center will have an instructor that cares that you understand the material and that you pass the exam.

Next Section

ENERGY AUDITOR NEWSLETTER

Get the only Energy Auditor Marketing Newsletter with monthly strategies and tactics to grow your home performance business.
Submit
Copyright 2015 Building Science Training Center LLC
Terms and Conditions